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Abstract. The compatibility of the phase-function method with the Riccati form of the 
Schrodinger equation is investigated and the phase and amplitude equations are derived 
by using the method of variation of parameters. 

The phase-function method ( PFM) [ 11 is a very useful tool for nuclear scattering theory. 
The quantity one deals with in this method is a variable phase or phase function 
S,(k,  p )  which represents the phase shift at energy k2 due to the potential V ( r ) e ( p  - r )  
(O(x) is the step function which vanishes for x < 0 and is unity otherwise). It follows 
by definition that S,(k, 0) = 0 and Sl (k ,  00) = S , ( k ) ,  the Ith partial wave phase shift. It 
obeys a first-order nonlinear differential equation called the phase equation. The 
complete description of a wave mechanical problem needs an amplitude function 
a , ( k ,  p )  in addition to the phase function. Once the phase function is known the 
amplitude function cu,(k, p )  can be obtained by solving a first-order linear differential 
equation called the amplitude equation with the initial condition ar( k, 0) = 1 .  Newton 
[2] has shown that a i ( k ,  p )  represents the modulus of the Jost function [3] produced 
by a potential truncated at p. The phase and amplitude equations constitute the basic 
algorithms of the PFM. The object of the present paper is to present a derivation of 
these equations from the Riccati form of the Schrodinger equation using the method 
of variation of parameters [4]. 

The Riccati or nonlinear form of the Schrodinger equation forms an important 
basis for large-order perturbation calculations [ 5 ] .  This equation has recently been 
used by Francisco et a1 [ 6 ]  to obtain eigenvalues of the Schrodinger equation non- 
perturbatively. The Riccati equation satisfied by the logarithmic derivative of the 
wavefunction also serves as a consistency condition for the Schrodinger factorisation 
method [7]. This fact has been recognised by Sukumar [8] in the context of supersym- 
metric quantum mechanics. Thus it is of considerable interest to examine the rationale 
of the nonlinear form of the Schrodinger equation for development of the PFM. 

Consider the Ith wave radial Schrodinger equation 

u l (  k, r )  + [ k 2  - I (  I +  l) /r2]u,(  k, r )  = V ( r ) u , ( k ,  r )  (1) 

for a potential V (  r )  at energy E = k2 > 0 and define the logarithmic derivative of the 
wavefunction U , (  k, r )  as 

(2)  Udk, r )  = uXk, r ) / u , ( k ,  r ) .  
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Here the prime denotes differentiation with respect to r and the term 1(1+ l ) / r *  stands 
for the centrigugal potential. Equations ( 1 )  and ( 2 )  can be combined to write 

U : ( k , r ) + U i ( k ,  r ) =  V ( r ) + 1 ( 1 + 1 ) / r 2 - k 2 .  (3) 
This represents the required Riccati equation. In the following we present a develop- 
ment of the PFM from (3). 

Let us begin by treating V ( r ) u , ( k ,  r )  in ( 1 )  as an inhomogeneity term in the 
second-order linear differeqtial equation under consideration. Then the Riccati Bessel 
and Neumann functions j , (  k r )  and $,( k r )  will represent the regular and irregular 
solutions of the corresponding homogeneous equation. Following Lagrange's method 
[4] of variation of parameters we look for a solution of the inhomogeneous equation 
in the form 

u / ( k ,  r )  = A / ( k  r ) J / ( k r )  -B , (k ,  r ) f i / ( k r )  ( 4 )  

where A,(k ,  r )  and B,(k,  r )  are undetermined functions. Differentiation of ( 4 )  with 
respect to r yields 

( 5 )  u i ( k  r )  = k[A/(k,  r ) j * j ( k r )  - B / ( k  r )$Xkr)I+{AXk,  r ) j ; ( k r )  - BXk,  r ) $ d k r ) ) .  
At this point we use the freedom of the method of variation of parameters to impose 
an extra constraint and require that the term in the curly bracket be zero such that 

Ai( k, r ) i (  k r )  - Bi( k, r )  $,( kr )  = 0. 

u ; ( k ,  r ) = k [ A , ( k ,  r ) Y i ( k r ) - - B , ( k ,  r)$i(kr)]. ( 7 )  

( 6 )  

This removes the derivatives of A,(k ,  r) and B,(k, r )  and results in (5)  taking the form 

In the PFM one separates the radial wavefunction into an amplitude part a,(k ,  r )  
and an oscillating part with the variable phase & ( k ,  r ) .  Such a separation can be 
incorporated within the framework of our method provided we make the choice 

A,(k,  r )  = a l (k ,  r )  cos 6, (k ,  r )  ( 8 a )  

and 

From ( 2 ) ,  ( 4 ) ,  ( 7 )  and (8) we have 

Substituting (9) in (3) and making use of 

2 w  + [ 1 - /(I + 1)/X2]2/(X) = 0 

we arrive at the phase equation 

6j(k, r ) =  -k-'V(r)[;,(kr) cos & ( k ,  r ) - $ / ( k r )  sin & ( k ,  r)I2. 

A ; ( k ,  r ) j j ( k r ) - B i ( k ,  r ) $ ; ( k r )  = k- 'V(r )u , (k ,  r ) .  

(11 )  

(12 )  
To get the amplitude equation we substitute ( 8 a )  and ( 8 6 )  in (6) and (12 ) .  This gives 

cyj(k, r ) [ j / ( k r )  cos 6 , ( k ,  r ) -  $ / ( k r )  sin 6 , ( k ,  r)]  

From ( 1 )  and ( 7 )  we have 

- a , ( k ,  r ) S ; ( k ,  r ) [ j , ( k r )  sin S, ( IC,  r ) +  i j , ( k r )  cos s,(/c, r)] = o (13)  
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and 

cuj(k, r ) [ i j ( k r )  cos & ( k ,  r ) -  + ; ( k r )  sin S f ( k ,  r ) ]  

- a l ( k ,  r )S ; (k ,  r ) [ g ; ( k r )  sin & ( k ,  r ) +  + i ( k r )  cos a f ( k ,  r ) ]  

= k - ' V ( r ) u f ( k ,  r ) .  (14) 

Eliminating 61(k, r )  from (13) and (14) and making use of (4) and (8) we get the 
amplitude equation 

cuf(k,  r )= -k - 'V(r )cu[ (k ,  r ) [ l f ( k r )  cos 6 1 ( k ,  r ) - + ( k r )  sin & ( k ,  r ) ]  

x [ j* , , (kr )  sin &(k,  r ) + f j I ( k r )  cos S l ( k ,  r ) ] .  (15) 

Traditionally, the PFM is developed either by using a Green function technique or 
by using an ansatz and a constraint [ 9 ]  defined through (4), (7)  and (8). The so-called 
Green function approach to the problem is a special instance of the more general 
Lagrange method used by us. Further, we have demonstrated the following. 

(i) The constraint used for the PFM follows naturally from the freedom implied by 
the method of variation of parameters. 

(ii) We have explored under which (additional) circumstances the Riccati form of 
the Schrodinger equation implies algorithms of the phase-function method. 
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